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Part I: The soiution of u  + u_ + k"u =0, with u (or %) on a

xX
balf-line is obtained by a simpler and more direct method t—i@n those
previously found in the literature. The method applies equally well
to a wedge of arbitrary opening. An idea of Magnus (1) is used to
simplify the solution when the boundary values can be exparideci in a
series of Bessel functions.

Part II: The problem of diffraction by an infinite cone with a

spherical tip is treated by a method similar to the used in part I.
Both point source and plane wave excitations are considered. When
the cone.opening 90 is -2E, the problem reduces to reflection from a

plane with a hemispherical boss., This simpler problem has been solved

by Twersky (7); ouw- results agree with his solution.

Part 1.

(a) We first determine the Green's function for the problem.
A two-dimensional unit source is located at the point (»!',8t) 4in
J
front of a semi-infinite sheet (& = 0),.

We wish to solve the two-dimensional problem

y On leave from Harvard University.



1 9%, 2 5p-F)de-e)

+ ku®

£ P (f9)° £2 546 £

u(Jo,O#) =0
u90,2'ﬂ'-)-0 .

u obeys the Sommerfeld radiation condition at infinity

Jdu
lim T ( - 3iku) =0
r =00 Ir

(r is measured from an arbitrary fixed origin).
It is immediately clear that the angular eigenfunctions of the
homogeneous equation are just sin -3- 8. This is a complete orthogonal

set of functions over 0 < ® < 27, satisfying the boundary conditions.
o
We write u{p,0) = a sin 2 © where the a_(p) are to be
\r’, ) nz-i n(f) 2 (f
determined.

We multiply equation (1) by sin -% © and integrate from O to 27T,

obtaining:

27 2
Tra"()a)* a'(}c)*ka(}o)*}]’?'f sm%e--?e—-de
(o]

- sin — o!

I it

(A priori it is possibls that the coefficients an()o) are no better than

0(-15) for larss n, therefore we may not be able to differentiate twice
n
termwise with respect to 8).
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Integrating twice by parts and using the boundary conditions on u

ard sin 922, we readily obtain
- sin 3 &

at(p) 2 2 >
L LN o L

Hence
/A Hr(ll)(kf) )o >f>|
2
an(f’) -

B I (ke) £ =p
2
This satisfies the radiation condition at infinity and the finiteness

condition at the origin.

We now require

an(f,l +) = ansal _)’

Recalling the Wronskian relation:

F [H%(l)(go') a0k - B (ket) a1ke)] = E
- 2 2 |

an(f) - % sin 521- o1 <
Hr(ll
2
-

) 3059 p < o
i A




We use the standard abbreviation:

? when f’ >./o'
%()o) = % sin g o1 Hél)(k)c») Jn(k)o<). The symbol F > means'g
i 2

2 Z{D' whenJo < f,'

Therefore we have the Green's function:

(2) uf,e) = G(Jo,e;)o',e') " % E sin % & sin % e Ht(ll)(kf>) Jn(kf<)
n, -
2

Nl

(Formulas of this general nature, derived by the use of the idea of sources
on a Riemann surface, are to be found in A. Sommerfeld (2)).

Expression (2) may be rewritten

G(f,e;f' ') = %:‘:—; sin n® sin no! Hr(ll)(kj») I (kp<)

LIS 2n+1 2n+1 (1)
4 DT Sin e Of +1(kf’ >) Jone (KpP<) -
2 2

It is easy to recognize the first series. Had we carried out a similar

analysis for a completely infinite sheet, the Green's function would
00
= (1)
turn out to be i nz-l sin n® sin ne' H (kf>) Jn(kf<)‘
We have therefore

2 1S™ oin o6 sin ne! 1 (ko>) I (ke<) = %{figl)(kn) - H‘(,l)(kn’)}

ns=]

where R is the distance between the source and the observation point,
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R* is the distance between the reflected source about © = O and the

observation point., This result could have been obtained from the

familiar addition theorem for cylinder functions. We may write

2 Gﬁé’e;f BB %{Hﬁ")m) - Hgl)(kR*)}

Q0
i 2n+l 2+l (1)
Y5 n}; sin <5< & sin <= & Hy iy (ke>) I a1 (K<)
2 2

We are now in a position to solve the problem of diffraction from a half-

plane. Let the incoming field be e:"kx preopagating towards increasing x.

The half-plane is located in the

plane x = 0, with y 2 0. We use

N\ the coordinate system indicated
\ €
= NC y in F 1. The total field i
> \ n Fig. 1. e to e s
= elkx y ~l L x :
Fig. 1 to vanish fer x = 0, y 2 0.
ikx

We can think of e as being the limiting case of a peint source re-
moved to x = - oo,
Indeed suppose there is a two-dimensional unit source at 6! = lzt,
= )
£ r MY
The field of this point source

is just % Hgl)(kn).

We have:




When Jo‘ is taken very large, the asymptotic expansion for
i 1 (1)) yiends

i
i [ o b  ikR
LT .
To obtain the limit eikx as jo' —> 00, consider
it
L ot ~ike!
S B Y (1 (1)
e ORI R

As )o'—>oo, cosﬁ — 1, R -/c'-—->0, and it is easy to see that the
limit of the above expression is eikx. |

It is reasonable to suppose that performing the same limiting
process on (3) will yield the diffraction a plane wave normally incident
on a half plane. Tbe result is derived rigorously in (b).

Thus, the total field is given by:

iT .
Tk -ik
o= s {7 fm )

Pl 12
L 12 2n+41 11 (1)
L 23t 0 sin B2 Tup)y (kp2) 3 (ke
T2 2
. eikx e-ikx
The terms outside the summation yield 5 "

In the summation, j° < /O' and the asymptotic expansion for H,(,lzl(lﬁd)
is used:

ik
ngl(l% ) =2 T P otaT

v



We obtain

- Q0
(4} u(e,8) = i sin kx + 2e 2 > (1) sin —2*— ® sin 2“51 3 2n+1(l§")

This formula can easily be identified with that of Magnus (1) who uses
the time dependence ei't and a rotated coordinate system.
The results for the case where the normal derivative vanishes on

the half-line are easily found:

o

(32) Gp,05 p',57) = i{nf}’(m) + 5D’

L1 2ne) 2001 o (1)
Z 2 co8 5= 8 cos 5= 6 H2n+l(k}°>) J2n*l(k/°<)
n=0 > ==

ti )
- 00
'%E - 2n+l 2n+1

(La) u(}o,e) = cos kx + 2e 2-_‘_0 (1) cos _2*._ e o3 _2* IIZ J2n+l(]_5 5 &

2
It is clear that the case of oblique incidence is easily handled by the
saxe method,

(b) Consider the following two-dimensional boundary value problem:
2 2 .
vu+ k“u=0 u()a,e+) - u(f,z‘\T-) = given function fSo);
u is continuous throughout the plane; grad u is continuous everywhere

except possibly on the half-line & = 0; un obeys a suitable condition

at infinity.



Remark on the condition at infinity.

The condition at infinity is not the Sommerfeld radiaiion condition
Un {5 (£2-ik) =0 .
prel s
In the case of diffraction by an obstacle having some’infinite
dimension, neither the total field nor the scattered field can be expected
to satisfy the radiation condition.
As a simple example, consider total reflection of a plane wave by an
infinite sheet.

The incident field is e o

ikx x <0
The total field is .
L. 0 x>0
The "scattered" field is - thxl None of these fields obeys the

Sommerfeld condition. The same is true for diffraction by a semi-infinite
sheet.

This is not fatal, however, since all we really need is

2n o

(5) llm J{H(l)(kn) H(l)(kn)} do =0 .

Thn "scattered” field in the problem of total reflection obeys condition (5).

In general, the geometrical optics field (i.e., no diffraction) will

differ from the gecmetrical .ptics field only by a field satisfying the
Sommerfeld condition, (5) will hold for the scattered field of the half-plane
prehblem, In any event we adopt (5) as the imposed condition at infinity. It
is clear that if (5) holds with the free space Green's function Hgl), it

would also hold with the Green's funstion G of part I,
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Let us apply Green's theorem to u and the Green's function G given
by (2). As the boundary of the region of integration is removed to in-
finity, we obtain (in virtue of (5)):

u()o",Q') = 4 fj(:) {g_le.o. g—le-zwr }

ap @, 2nel o, (1)
"/‘D f(}a) {:4;05 {2n+1) sin '—2-9 H( 1(kf°>) .

> 2
Under suitable conditions, this may be written as

00

£(
g; (2n+1) sin Bl o [ ap }f’ H(l)l(kf >) J2n 2 (K
==

o

NI

(6) u&,.,g.) -

At first, it mignt appear that lim wu(o',8') = 0; this is not true.
8130+
We will show that the integral in (6) is no better than 0( ), hence the

coefficient of sin 2121 ©! is no better than 0(—), the series will exhibit
discontinuities at €' = 0, 2TT, and lim u(f' 0) = f()a )e
0" 21 -

Formula (6) gives the solution of our prcblem in a rather untractable
form. Magnus (1) noted that integrals of the type (6) are considerably
simplified when f(}o) admits a series development in Bessel functions of
integral order. lst

We split the integral into integrals from 0 to f' and /o' to o.

In cach integral we let t = k i
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£ 050 Iy (®) = Sp @) 300} T

= =2 2 1
‘n,n © 2 (2n+1) By )1(}5"')

{J (t) H(l)l(t) ngl(t) Jm(t)} i

2 2 Jo (k) .
* 2 _ (212 ?‘;—l(f)
- &2 i

The contribution from O vanishes, the contribution at infinity is

iT 2ntl
(m - =5=)
21 0 2 2
-"- e
2 - (mgl)Z

If we use in addition tbe formula for the Wroaskian of part I, we

obtain

. . % -T (i)m-n (kf - _. Jm(kf')
m,n 4 2n*1 *
n? - (2L)2 w? - (&L

For the case f(f:) = Jm<j°) (6) rsduces to:

- 2n*1
m L o 2n+l) sin o!
%l(f' ,gl) - Liz L Z (i)- ( ) szl(lﬂ"')
m n=0 . 2 2n+l.2 ——
R 5/ 2
Jm(kf") @© 2n + 1 2n+l
- Z_ sin e



The first of these Fourier series in ©! has coefficients 0(1—2) due
to the rapid decrease with n of Jg:g_#_l(kjd)' This series repres‘:axr:ts a
continuous function which vanishes 2&1‘. ©! = 0, 271, Hence the limiting
values as €!-<» O+, 27T - are also zero.

The second series has coefficients O(%) and may exhibit & discon-
tinuity at €' = 0. As a matter of fact it can be shown by an elementary

computaticn that

-Trcosme-i en vl sinznTﬂ'O' .
n=0 2 2n+1 2
- (=)

Thus:

lim - um()o',e') = Jm(kjo')

s
as required., We can write:

(2n+1) sin 2L o1
R i T e ) ) e
m 2

®
In general if f(o) admits an expansion f(e) = J (ko) we will
3 () = 2 fn S
obtain

00
(7) “(f',e') - mZ'O/jm Jm(?') cos me!




It is now easy to solve the problem of diffraction by a half-plane.

For simplicity we take normal incidence. The total field W(fa,e) may be

ikx

split up in an incident field e and a scattered field u(f,e) satisrying

(5). The values of u()o,e) on the half-plane are just f()o) = -1, Since

@®

_1---;4"I 3 zp(k)a),wecanuse (7),withﬁ --€ -i)mcosm:g-;

(€, =1, € =2, m>1), thus obtaining
> ‘

u(ot,0r) = € .J, (kot) cos 2me!

I LI

Al
L

4 . 2n+1
% = (1)™® (2n+1) sin 5

The first sum is recognized as - cos (lja' sin €!) = — cos kx!,

(e 0]
e J (ko! -
m;l‘?”%o

€m

cos ml

2

e

- (&2

The last

sum can be evaluated by an elementary computation (see Magnus (1), p. 175)

I
f-e cos m = o2 .
m 2n+l

=0 &
m m2 = (312"1)

Thus we have a single summation for u()o' ,8') and we obtain

-1
(8) w(f,e) = i sin kx +2e 2:’; (1) ain
n

which agrees with formula (4) of (a).

Mgsm

w21

Ianva (%p)

2
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It has been shown that {8) can be transformed into the Sommerfeld
solution (eee Magnus (1), p. 179) and into the Kontorowich-Lebedev

solution {(4), p. 241).

Part II.

We consider now the diffraction by a cone with a spherical tip.
The problem of the cone
without a tip has been

treated by Sollfrey (5).

Fig. 3. \

\ -
The cone is infinite and the source is taken at & = yv, r = r'. The

problem can be solved with only slight additional difficulty for other
locations of the source. -

Tpe total field satisfies

- - !
Vzu + k2u = _ﬂr_z_)_S_(Ql (the field is independent

2T\'r2 sin € of ?)

The boundary condition is taken as u = O on both th~ sphere and cone.

2. 790

r sin € 2T+ 5in &

(9) %’ gi (r2 ?u) * Z (sin PA’ ) + K2 ,_S(r-r')i(e)
2 2

When r ¥ r!, the homogeneous equation can readily be separated yielding

the equaticn for the € part of the separable solutions
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1

2 5% (stnew) + Aw=0 w(9,) = 0

w(Th) finite

2\ is a separation constant. If we let A = v (¥ +1l), x = cos 6,

a% [(1-x?) %;.] + Yy(Y+Lw=0 w(-1) = finite

w( cos 60) =0 .

The only solution which is finite at -1 is Pv(-x) s the Legendre function
of the first kind,

The eigenvalues ) are determined from the equation P))(- cos 90) = 0,
The functions B (- cos ©) from a complete orthogonal set in the interval

>

o <€ <77, with weight sin 6. The vormalization factor

i
f Pf;(- cos ©) sin € ¢ = A,

%

will be evaluated later,
We return to equation (9) and consider for u an expansicn of the

foru
u= Zv' a),(r) Py(- cos 8) .

We multiply (9) by r2 l;“(- cos ©) sin € and integrate from eo to T .

We obtain the differential equation for a}“(r):

2,2 = S(rrt)

d 2
(10) = (r“ al) + X°r ea-/o(/u*l)a;“ = ZTA,



o

The solution of (10) may be written as:

o () = ¢ 202/2052) By pp(1)
Vo = <

where 2 is a cylinder function which vanishes at r = a, We have

url/2
taken care of the boundary conditions at r = a, r = oc, and of con-

tinuity at r = r'. We determined C from the jump condition
1
27T r!

a/L(r‘*) - a/}*(r'-) s - 5

gl -
at(r'+) = C é‘ j‘_{_z_ J—_ ,ad 2(kr ) - /5%{/2(10") "_‘_7'; 2}

B
e = uen/20) = B fplt): 7}

Hence
k (1) } 1
C = Wronskian < 2 H B e ——,
T {/“’1/2’ P2 27r1? 4,
We write
(1)
7 1/211,..\ - "(l])./Z(‘—") Izi.“_*l/?.(ka) ..(2}./ (ier)
oy \ad Y3 + ni - 2 o 2 .
~ Hvijotee) ©

It is known that

Wronskian {u(f)(kr), Hsl)(kr)} -- ;T% .
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Hence:
- o f(tf{/z(ka)
Tﬁ h ) *
+l/2‘

We may now write the total field:

P),(-cos ) H(2])_/ (ka) H(i'l)_/z(kr>) %)*LLIZ(qu

g ! A
u(r,8) = 3 2; A, ng /2(1;,3) = <

The sum is taken over all 3y such that P))(- cos Go) = 0, and Zv+1/2 is
defined by (3).

We now consider the diffraction of a plane wave by our obstacle.
This is to be obtained by removing the point source to infinity in a
suitable manner. Using the symbols in figure 2 (with = r'), and

letting the source go to - @ along the x axis:

i)XR ikr' ikx
e e e

It~ T &Tr .

ilox

The total field v(r,0) from a plane wave ¢ will be:

1 A0z u(r,8)
r'-om eikr'
g(2) (1)
i LTIe! <« Py(‘°°3 e) H *l/z(ka) Z ,1/2(10‘) R l’zrkr')

Ple T S T G



=~ J7 =

Asymplotically
20 I

D ey~ [ o T2 T

v*1/2 T *
The total field is:

\ ¢ Py(~cos ) H(4::)L/2‘k&‘) Y+l 2(h') w " —1'2LTL
(12/ ‘(r,e) = Z A (l) -ZY e -
» . 9+.L/2(ka) ir

A , bay be obtained from (see Sollfrey (5)):

-
8, -g P3(-cos 6) sin € do

o

1 G2 2 2
-2yl 0 eo{chos YR (-cos eﬂe—%{ﬁ P),(-cos e)}9=9-0 s

In the case 8 = Jg-, y is determined from Py (0) = 0. Hence v is an

arbitrary odd integer, 2u+l

o =[] p2 (—cos ©) sin & d6 = flpz (x) dx =
el T Poney (-c0s ) sin ), Fannn ) Tov3
2

H2n+3/ 2(‘“‘) T

This was obtained by Twersky (7) using a combination of an image method

and superpcsition,



()

(2)

(3)

(4)

(5)

(6)

(7)
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